

    
      
          
            
  
Battlesnake

Battlesnake is a Softcode [http://wiki.tinymux.org/index.php/Softcode] supplement/replacement bot for BattletechMUX [http://battletechmux.com/].

The typical BattletechMUX [http://battletechmux.com/] requires numerous complex systems to function. For
example:


	Mech ref libararies

	Economic simulations

	Stores for purchasing/selling commodities and parts

	Player stat tracking

	Bulletin board systems



While these have all been successfully built and maintained in softcode,
maintenance and future expansion can be very slow. Softcode [http://wiki.tinymux.org/index.php/Softcode] is a poor choice
for larger systems.

There are also things that can’t be done in-game without the help of
hardcode modifications or logfile workarounds:


	Sending emails

	Communication with arbitrary databases/data stores

	Web-based character creation

	Integration with messenger services

	Utilization of social media



Battlesnake aims to supplement or replace large chunks of softcode in your game,
while also opening up any external services you’d like to use.


Learning more

Project Status: Early development

License: Battlesnake is licensed under the BSD License [http://opensource.org/licenses/bsd-license.php].


	Source repository: https://github.com/gtaylor/btmux_battlesnake

	Issue tracker: https://github.com/gtaylor/btmux_battlesnake/issues

	Live support is available on the BTMux channel on the Frontier [http://frontiermux.com/].






Documentation



	How it works
	What is Battlesnake ideally suited for?

	Example usage cases





	Installation

	Getting started using the Bot
	A crude botinfo example

	Moving on from here





	Battlesnake protocol
	Inbound vs Outbound commands

	A high level overview of inbound command syntax

	Sending key/value data with inbound commands

	Sending lists values

	Protocol limitations





	Triggers
	Common usage cases





	Timers
	Common usage cases





	Settings
	[mux]

	[account]

	[bot]

	Plugins














Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    

  

    
      
          
            
  
How it works

Battlesnake is powered by Python [http://python.org] and Twisted [http://twistedmatrix.com/]. The bot connects to your
game over telnet, just like a user would. It sets some semi-random tokens
on its player object that allows your softcode to communicate with it
via @pemit.

Your softcoded commands end up being mostly for gathering up the relevant
data to @pemit to Battlesnake. If the commands need to send a reply
back out to a player, the bot does so with @pemit as well.


What is Battlesnake ideally suited for?

Battlesnake is best used for larger, more complicated systems that would be
easier maintained in Python [http://python.org] than softcode. Battlesnake may be paired with
your choice of database or data store, with softcode commands used to
feed game state data to Battlesnake. The bot can also pull things from the
game on its own if you show it how to.




Example usage cases

A few ideas for neat things Battlesnake can be used for:


	Web-based character creation

	Adding an HTTP API for your website’s use

	Tweeting/SMS’ing/emailing certain events to your playerbase

	Very detailed player stat tracking (perhaps shown on your website)

	Stuffing arbitrary bits of data into a full-fledged database

	External AI

	Web-integrated bulletin board systems

	Economic simulations

	Research/industrial/assembly systems









          

      

      

    

  

    
      
          
            
  
Installation


Warning

Battlesnake currently requires a game database with a very
specific set of objects/functions/parents. If you don’t have a DB from
Kelvin, you’ll want to find him on the Frontier’s BTMux channel and ask.
We’ll eventually have one up for download once this stabilizes.



Battlesnake is developed on GitHub [https://github.com/] in a git [http://git-scm.com/] repository. We don’t do any
point releases at this time, as things are still evolving, and the expected
audience for this software is pretty niche.

The first thing to do is retrieve a clone of the repository:

git clone https://github.com/gtaylor/btmux_battlesnake.git





This will leave you with a btmux_battlensake directory. cd into it:

cd btmux_battlesnake





Now install the requirements via pip, preferrably within a virtualenv [http://pypi.python.org/pypi/virtualenv]
(you are using virtualenv, right?):

pip install -r requirements.txt





If you want to be able to generate documentation locally or run the test
suite, install the developer dependencies:

pip install -r requirements_dev.txt





Now copy the starter config file and adjust the hostname, port,
username, and password values:

cp config/battlesnake.cfg.dist battlesnake.cfg
vim battlesnake.cfg (Or whatever your preferred editor is)





You are now ready to run the bot (from within btmux_battlesnake):

twistd -n battlesnake





This defaults to using the battlesnake.cfg file in your current directory,
but you can run multiple bots or use an alternative location with the -c flag:

twistd -n battlesnake -c battlesnake.cfg





When in doubt, check out the help listing:

twistd -n battlesnake -h






Tip

You will not be able to run battlesnake unless your current
directory is btmux_battlesnake (or whatever you have renamed it to).
This is a limitation of Twisted’s plugin system.



For more details on settings, check out Settings.





          

      

      

    

  

    
      
          
            
  
Getting started using the Bot

At this point, we assume that your bot is connected to your game. The first
thing you’ll want to do is examine your bot’s player object. We’ll also
assume that its name is Battlesnake. You should see three attributes
like these:

BATTLESNAKE_PREFIX.D: @G$>
BATTLESNAKE_KWARG_DELIMITER.D: &R^
BATTLESNAKE_LIST_DELIMITER.D: #E$






Tip

Note these values, as we’ll be using them in the examples below.



You’ll also want to note your bot’s dbref.
We’ll use the dbref #123 as a placeholder.


A crude botinfo example

Now choose an object to put a command on. This could be in your master room
or in your current location. Here’s the attribute we’ll set:

BOTINFO.C: $botinfo:think [u(#47/SET_BOT_REGISTERS.F)][u(#47/SENDPACKET.F,botinfo)]





Breaking this down, SET_BOT_REGISTERS.F sets some %q registers that
SENDPACKET.F uses to form a pemit() call to a connected bot.
The botinfo command is being sent to the bot.

You’ll probably want to set your bot WIZARD first, then try running your
new botinfo command within your MUX. If everything is set up correctly,
you should see a response with some info about the bot.




Moving on from here

The next step is to read over the Battlesnake protocol and start thinking big!







          

      

      

    

  

    
      
          
            
  
Battlesnake protocol

Battlesnake communicates over @pemit, using strings broken up with
multi-character delimiters for various purposes. While the protocol is crude
and makes some assumptions, it is reliable enough for heavy usage.


Inbound vs Outbound commands

Battlesnake has a notion of inbound and outboud commands. Outbound
commands are those performed by the bot, sending text to the game. Inbound
commands are @pemit strings asking the bot to do something, typically
from your softcode.

This document will mostly focus on inbound commands, as that is where most
of the challenge is.




A high level overview of inbound command syntax

An simple inbound command @pemit syntax example:

<prefix_str><command_name><kwarg_delim><invoker_dbref>





Breaking this down by component:


	<prefix_str>

	A randomized multi-character string that is set on the bot’s player object
when it connects. If the bot sees this at the beginning of a line of input,
it knows to look command_name up in its command table.

	<command_name>

	This is the command name that Battlesnake will look up in its internal
command table. For example, send_email.

	<kwarg_delim>

	This is another randomly generated multi-character string that is used
to separate bits of input to send to the bot. Almost all data (save
for the invoker’s dbref) is in key=value form, separated by this delimiter.

	<invoker_dbref>

	This is the object on the MUX that is sending the command. The most common
use for this is to give the bot a way to reply to the invoker.



Here’s an example inbound command with no additional data:

PREFIXSTRsend_emailKWDELIM#212





<prefix_str> is PREFIXSTR, <command_name> is send_email,
<kwarg_delim> is KWDELIM, and <invoker_dbref> is #212.




Sending key/value data with inbound commands

We know how to send inbound commands now, but this isn’t too useful unless
we can also send in arbitrary bits of data. Expanding on our previous
example, here’s how that works:

<prefix_str><command_name><kwarg_delim><invoker_dbref><kwarg_delim>key1=value1<kwarg_delim>key2=value2





As you can see, kwarg_delim is used to split up key/value pairs. On the
Battlesnake side, we convert these into Python dicts. Here’s how the command
parser would split this up:

{'key1': 'value1', 'key2': 'value2'}





But what if we omit a value for a key?

<kwarg_delim>key1=<kwarg_delim>
{'key1': ''}








Sending lists values

Sometimes we’ll need to send lists instead of individual values:

<kwarg_delim>key=item1<list_delim>item2





We’ve introduced a new delimiter, list_delim. Much like prefix_str
and kwarg_delim, this is a randomly generated multi-character delimiter.
The presence of a list delimiter in a kwarg’s value causes it to be converted
to a list in Battlesnake. Let’s say we do something like this (omitted
invoker/command name/prefix for brevity):

<kwarg_delim>key=item1<list_delim>item2<list_delim>item3





Within Battlesnake, this would be interpreted as:

{'key': ['item1', 'item2', 'item3']}





You can combine regular string values and list values without issue:

<kwarg_delim>key1=value1<kwarg_delim>key2=item1<list_delim>item2<list_delim>item3





In Python land, this would be interpreted as:

{
    'key1': 'value1',
    'key2': ['item1', 'item2', 'item3']
}








Protocol limitations

The Battlesnake protocol only knows of two different data types: strings and
lists. Your logic on the Python side will need to know how to treat the data
being passed in. If you need ints, you’ll need to cast them and potentially
handle errors.

While the delimiter characters should be random enough to avoid collisions,
if your softcode were to generate values that matched one of the delimiters,
kwarg pairs could be discarded. The likelihood of this happening is incredibly
low, though, unless your data is sufficiently random and large.







          

      

      

    

  

    
      
          
            
  
Triggers

Battlesnake’s triggers work much like a traditional MU* client’s in that
a key phrase sets off an action. The primary use for triggers in Battlesnake
is for data collection, though it can be used for a number of other
purposes.

A Trigger consists of a regular
expression that determines what to look for, and a function to run when
a match is made. The neat thing about Python regular expressions is that
we can use regex groups to break the matches up into useful pieces. For
example, if a trigger has the following regex:

line_regex = re.compile(r'(?P<talker>.*) says "[Hh]ello"')





Our run method on the Trigger
can address each group individually:

talkers_name = re_match.group("talker")
response = "Why hello there, {talkers_name}.".format(talkers_name=talkers_name)
mux_commands.say(protocol, response)





In the case of the previous example, anyone saying “Hello” to the bot would
be greeted back:

You say "Hello"
Battlesnake says "Why hello there, Kelvin McCorvin."





Note how the original speaker’s name comes back.


Common usage cases

We’ll outline a few common usage cases for Triggers, for the sake of providing
some ideas. These aren’t the only uses, though.


Retrieving data

If you have a large amount of data to feed your bot on a regular basis,
you can use triggers and Timers in conjunction with one another to do
so. Perhaps you write a softcode command that your bot executes with a timer,
picking the output up with a trigger. Or maybe your game has a task scheduling
system interally which can be used to @pemit a string matching one of your
triggers in order to feed data in.




Event monitoring

Triggers can be used to watch for certain events. Perhaps you join your bot
to the MUXConnections channel and set up a trigger to note when players
log in. Or maybe you park your bot in an Observation Lounge and use triggers
to record shot stats or respond to base capture emits.









          

      

      

    

  

    
      
          
            
  
Timers

Battlesnake’s timers work much like a traditional MU* client’s in that
they are used to perform an action every so often. There are two kinds of
timers:


	battlesnake.core.timers.IntervalTimer

	battlesnake.core.timers.CronTimer



Timers of the IntervalTimer
type are executed on intervals measured in seconds. For example, “Do
something every 30 seconds”.

Timers of the CronTimer type
execute tasks at pre-set times during the day. For example, “Do something
on the 30th minute of every hour of the day”. Use these when you want
to get very specific with execution times.


Common usage cases

We’ll outline a few common usage cases for Timers, for the sake of providing
some ideas. These aren’t the only uses, though.


Retrieving data

Battlesnake has to either retrieve or be fed data from your game in order
to stay in sync with what is going on. Timers are a great way to achieve
that.

Some example ways to do this:


	Run the battlesnake.outbound_commands.mux_commands.think() command
to retrieve specific values of interest.

	Run various softcode commands in your game whose output is picked up
by Triggers within Battlesnake. This is good for when you have a
very large volume of data to retrieve (which may be a lot more involved
to pick up via
think.






Economy/weather ticks

Economy and weather simulations are some of the more bulky, nasty bits of
softcode in your typical BTMUX. These are excellent candidates to move into
Battlesnake. Timers are important pieces of both Economy and weather-related
things.




Stat collection

If you are tracking certain time-series data points (like # of users connected),
timers are a great way to make sure you are getting points the correct
interval.









          

      

      

    

  

    
      
          
            
  
Settings

When Battlesnake is started, the path to your config file is passed in
via the -c flag. Default values are pulled from
battlesnake/config/configspec.cfg. Any of the values detailed below may
be overridden in your config file.

The name in brackets in each section below is the section name in the
config file.


[mux]


	hostname

	The hostname or IP address of your game. Must be overridden in your
config file.

	port

	The port to connect to. Must be overridden in your
config file.






[account]


	username (default: Battlesnake)

	The player username to connect as.

	password

	The player’s password. Must be overridden in your
config file.






[bot]


	response_watcher_expire_check_interval (default: 1.0)

	Sets the interval (seconds) for how often to check for stale response
watchers to purge.

	enable_hudinfo (default: False)

	If True, generate and send a HUDINFO key. This will allow you to start
using HUDINFO commands.

	extra_services (default: [])

	A list of Python paths to loader functions that return a Service.
If you only have one item to add to the list, make sure there is a
trailing comma or you’ll get a validation error. A comma causes our
config system to convert the string to a list.

	plugins (default: ‘battlesnake.plugins.example_plugin.plugin.ExamplePlugin’,’battlesnake.plugins.nat_idler.plugin.NatIdlerPlugin’)

	A comma-separated list of BattlesnakePlugin sub-classes to register.
Plugins can contain Triggers, Timers, and commands.






Plugins


[nat_idler]


	keepalive_interval (default: 30.0)

	Sets the interval (seconds) at which the bot sends an IDLE command to the MUX.
This is useful to prevent timeouts over NATs.






[unit_spawning]


	unit_parent_dbref (default: #66)

	Your mech/unit parent’s dbref.






[ai]


	ai_parent_dbref (default: #69)

	Your AI parent’s dbref.











          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/minus.png





_static/comment-close.png





_static/up.png





_static/file.png





_static/plus.png





_static/down-pressed.png





_static/ajax-loader.gif





_static/comment-bright.png





_static/up-pressed.png





nav.xhtml

    
      Table of Contents


      
        		Battlesnake


        		How it works
          
          		What is Battlesnake ideally suited for?


          		Example usage cases


          


        


        		Installation


        		Getting started using the Bot
          
          		A crude botinfo example


          		Moving on from here


          


        


        		Battlesnake protocol
          
          		Inbound vs Outbound commands


          		A high level overview of inbound command syntax


          		Sending key/value data with inbound commands


          		Sending lists values


          		Protocol limitations


          


        


        		Triggers
          
          		Common usage cases
            
            		Retrieving data


            		Event monitoring


            


          


          


        


        		Timers
          
          		Common usage cases
            
            		Retrieving data


            		Economy/weather ticks


            		Stat collection


            


          


          


        


        		Settings
          
          		[mux]


          		[account]


          		[bot]


          		Plugins
            
            		[nat_idler]


            		[unit_spawning]


            		[ai]


            


          


          


        


      


    
  

_static/comment.png





_static/down.png





